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PROGRESS IN FAVRE-REYNOLDS STRESS CLOSURES FOR COMPRESSIBLE FLOWS 

V. ADUMITROAIE*, J.R. RISTORCELLlt, AND D.B. TAULBEE* 

Abstract. A closure for the compressible portion of the pressure-strain covariance is developed. It 

is shown that, within the context of a pressure-strain closure assumption linear in the Reynolds stresses, 

an expression for the pressure-dilatation can be used to construct a representation for the pressure-strain. 

Additional closures for the unclosed terms in the Favre-Reynolds stress equations involving the mean ac- 

celeration are also constructed. The closures accommodate compressibility corrections depending on the 

magnitude of the turbulent Mach number, the mean density gradient, the mean pressure gradient, the mean 

dilatation, and, of course, the mean velocity gradients. The effects of the compressibility corrections are 

consistent with current DNS results. Using the compressible pressure-strain and mean acceleration closures 

in the Favre-Reynolds stress equations an algebraic closure for the Favre-Reynolds stresses is constructed. 

Noteworthy is the fact that, in the absence of mean velocity gradients, the mean density gradient produces 

Favre-Reynolds stresses in accelerating mean flows. Computations of the mixing layer using the compress- 

ible closures developed are described. Full Reynolds stress closure and two-equation algebraic models are 

compared to laboratory data. The mixing layer configuration computations are compared to laboratory 

data; since the laboratory data for the turbulence stresses is inconsistent, this comparison is inconclusive. 

Comparisons for the spread rate reduction indicate a sizable decrease in the mixing layer growth rate. 

Keywords: compressible turbulence, compressible pressure-strain, algebraic Reynolds stress models 

Subject classification: Fluid Mechanics 

1. Introduction. There has been a resurgence of interest in effects of compressibility on turbulent 

flows related to the design of high-speed/high-altitude engines. Although experimental and numerical infor- 

mation is growing (for reviews see [1, 2, 3]) rational theoretical and modeling efforts are in a preliminary 

stage of development. This is consistent with the fact that what is understood of the relative importance of 

many of the different physical effects of compressibility is very much in flux — changing as more numerical 

simulation information becomes available. While several issues regarding the effects of the compressibility of 

the turbulent fluctuations have been recognized, progress in incorporating the physics responsible for these 

new compressibility effects in single-point turbulence closures has been slow. One of the major impediments 

to progress has been the absence of a procedure that would allow for the inclusion of the effects of com- 

pressibility on the pressure-strain covariance appearing in the second-order moment equations. A method of 

including compressibility effects as they appear in the pressure-strain covariance and also the variable inertia 

effects are the subject of the present study. 
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Several earlier studies have obtained closures for diverse effects of compressibility. Researchers have, in 

general, exploited a decomposition of the compressible field into solenoidal and dilatational parts. This has 

been done using a dimensional analysis in physical space [4] or in Fourier space [5], asymptotic analysis [6], 

rapid-distortion theory [7], and a singular perturbation method [8]. All these approaches have generated 

models for new compressible scalar terms, the pressure-dilatation and the dilatational dissipation, that 

appear in the kinetic energy equation for high-speed flows. Such an approach to compressible turbulence 

modeling has been called, very sensibly, an "energetic" approach to the effects of compressibility, Simone 

et al. [9]. The models resulting from the "energetic" approach to compressibility have been applied as 

compressibility corrections to the standard k - e model, [10], and their generalizations, [5], or to standard 

incompressible second-order moment [Reynolds stress] closures [11, 12, 13]. Such a procedure is, of course, 

an implicit statement that compressible effects do not manifest themselves in either the pressure-strain or 

in the dissipation of enstrophy; the effects of compressibility occur only in those terms explicitly linked to 

the new terms involving the dilatational field. Thus, energetic approaches to the problem of compressible 

turbulence, as pointed out in [9], are incomplete. 

At one time, the pressure-dilatation and the compressible dissipation, on which modeling effort has been 

expended, were believed to be the primary physical effects contributing to the reduced growth rate of the 

compressible mixing layer. Recent studies [14, 15] have demonstrated that the dilatational effects on the 

mixing layer are, in fact, much smaller than once believed. In addition, more recent direct numerical 

simulations (DNS) suggest that the pressure-dilatation covariance is nominally more important than the 

compressible dissipation, contrary to early proposals, [4, 6]. The pressure-dilatation does not, however, 

account for the reduced growth of the mixing layer. It appears, as suggested in [16], that the phenomena 

responsible for the reduced growth rate of the turbulent shear flows is due to the reduction in the Reynolds 

shear stress anisotropy; this effect is thought to be due to the effects of compressibility on the pressure-strain 

covariance. This viewpoint is consistent with the earlier numerical studies of [17]. The articles [13] and the 

later [18] studied Reynolds stress closures in the context of the DNS of the homogeneous shear. The study 

showed that the inclusion of the [then] current compressible dissipation and pressure-dilatation models in the 

Reynolds stress turbulence closures led to improved predictions for the turbulent kinetic energy. However, 

there were no changes in the anisotropy consistent with that seen in DNS. The authors concluded that 

the [then] current models were deficient primarily in the modeling of the pressure-strain covariance which 

controls the level of Reynolds stress anisotropy. 

It should be noted that the improved agreement for the time evolution of the kinetic energy, [13, 18], when 

using the compressible models of that time cannot be taken to indicate that such flows were rationally 

predicted. The models current at that time, designed with erroneous assumptions regarding the importance 

of the dilatational effects, were providing the right amount of dissipation but by mechanisms that did not 

reflect actual flow physics. This has since been substantiated numerically in the studies [9, 14, 15, 16]; all of 

which indicate the lack of significance of both the pressure-dilatation and the compressible dissipation. The 

fact that the compressible dissipation and the pressure-dilatation are nominal effects is also consistent with 

the analytical development of [8]. In [8] the pressure-dilatation is shown to vanish as turbulence approaches 

equilibrium; the simulations mentioned are quasi-equilibrium flows. It should be mentioned that in the 

homogeneous shear simulations, arguably the most non-equilibrium of the benchmark flows, the pressure- 

dilatation is small but non-negligible; it is some 5-10% of the dissipation. Our position is the same as 

the position of Vreman et al.   [14] as pithily summarized in their conclusion; to paraphrase, turbulence 



models constructed using the dilatational dissipation or pressure-dilatation to explain the suppression of the 

turbulence [in the mixing layer] do not appear to be reflecting the correct physics. 

Thus, if it is assumed that the primary source of the reduced mixing rate in the mixing layer is due to the 

reduction in the shear stress anisotropy as indicated by DNS then a closure of the second-moment or Reynolds 

stress equations is required: the pressure-strain covariance appearing in the second-moment equations is the 

only possible mechanism for such behavior. This is a substantially more difficult problem than that treated 

using the energetic approach; the quantities requiring closure are no longer scalars but second-order tensors. 

As one might expect, true compressible second-order modeling attempts are few, [7, 19]. 

This article describes the development of a closure for the compressible aspects of pressure-strain covariance 

appearing in the Favre-Reynolds stress equations. [As is clear from the material, the phrase Reynolds 

stresses will be used to refer to the Favre-Reynolds stresses.] Closures for the unclosed terms involving the 

mean acceleration are also constructed. In as much as most engineering calculations [in this country] are 

done with lower order closures this article therefore also includes the additional development of the second- 

order moment closure into an algebraic Reynolds stress closure, suitable for flows in structural equilibrium, 

following established procedures [20, 21, 22, 23, 24, 25, 26, 27, 28]. 

The algebraic Reynolds stress expression is noteworthy for the fact that it indicates that, even in the absence 

of mean deformation, the mean density gradient is a source of turbulence stresses in accelerating mean flows. 

As a consequence, for flows with large arbitrary mean density and pressure gradients an eddy viscosity 

representation for the Reynolds stresses is, from first principles, inappropriate. Qualifications regarding this 

statement are further discussed in §4. 

In the next section, §2, the Favre averaged nondimensional form of the governing equations are given. Both 

first and second-order moment equations for a compressible medium, with no combustion, are given. Issues 

related to moment closures for compressible turbulence are also outlined. 

The development of closures for the effects of compressibility in the Reynolds stress equations is described 

in §3. It is shown that, within the context of a pressure-strain closure linear in the Reynolds stresses, an 

expression for the pressure-dilatation covariance can be used to construct the off-diagonal components of 

the pressure-strain covariance. In this way the results of previous so-called energetic approaches, [9], to the 

effects of compressibility can be built into the deviatoric portion of an expression for the pressure-strain. 

It is hoped that such a procedure would allow one to avoid the development of a whole new theory and 

methodology for a compressible pressure-strain closure. 

Closures for the effects of the mean acceleration, which involve the mass flux, are also developed. The new 

closures account for the influence of the turbulent Mach number, and the mean density and pressure gradients 

through a new quantity, the baroclinic dyad. The effects of the bulk dilatation are also included. Section 

3 is concluded with a summary of models for the compressible dissipation; given the acknowledged lack 

of importance of the compressible dissipation in weakly compressible aerodynamic turbulence, as discussed 

above and in §3, no development of models for the compressible dissipation is pursued. 

Starting with the closure for the second-order moment equations developed in §3, §4 develops an algebraic clo- 

sure for the Reynolds stresses. The physics of compressibility as captured by the full second-moment closure 

are therefore built into the simpler and more widely used two-equation k — e platform. The tensor polyno- 

mial representation techniques employed produce both two-dimensional and three-dimensional versions of an 



algebraic turbulence stress closure. Given the complexity of the three-dimensional algebraic closure and the 

current status of single-point turbulence models for three-dimensional flow only the two-dimensional model 

is developed into a working closure. 

Section 5 focuses on a numerical investigation of the closures. The numerical method used to simulate the 

free-shear flows of interest is sketched. The theory and results presented in earlier sections are implemented 

in simulations in the mixing layer. 

Simulations using second-order moment (SOM) closures as well as the algebraic models are conducted. The 

numerical experiments are constructed with the intention of investigating several very different issues of 

relevance to the prediction of compressible turbulent flows for engineering purposes. Foremost in importance 

is the ability of an algebraic stress model - that includes the effects of compressibility - to reflect the physics 

in the full SOM closures. 

The pressure-strain methodology developed for the SOM equations in §3 are general and depend on a choice of 

closures for the pressure-dilatation. As consequence it follows that it is necessary to understand sensitivity 

of the formulation to different models for the pressure-dilatation. In this context two pressure-dilatation 

models are investigated. 

In addition to assessing the sensitivity of the pressure-strain model to different pressure-dilatation models 

and the suitability of the algebraic stress closure, we compare the computational results to what is seen 

in numerical and laboratory experiments. Of particular interest is the well known effect of compressibility 

on reduction of the spread rate of the mixing layer. In as much as the reduction in the spread rate is 

due to changes in the the anisotropy of the Reynolds stresses, as a function of compressibility, are also 

investigated. Given that the anisotropy of the Reynolds stresses is dependent on the pressure-strain, the 

effects of compressibility on the different components of the pressure-strain are also investigated. 

2. Governing equations. The problem formulation is now described. This includes a statement of 

the governing equations - the first and second-moment equations. Indications of the modeling issues to be 

addressed in subsequent sections are also given. The Favre averaging procedure is first described. 

The conservation equations for mass, momentum and energy in a Favre setting are now derived. The 

dependent variables used are the density p, the velocity Ui and the total energy et = h - p/p + UiUi/2. 

The fluid is assumed to be Newtonian fluid satisfying the Stokes relation with zero bulk viscosity and a 

constant molecular Prandtl number. Although real gas effects are of interest for industrial applications 

there are a sufficient number of unresolved and more important issues associated with compressibility that 

justify limiting the study to ideal gases. Consequently, the pressure p is obtained from the equation of state 

p = pRT. 

The Favre averaging procedure is now described: denote by an over-bar the ensemble (or time) average and 

by the brackets the density weighted ensemble (or time) average: 

(1) (X) = f 

The ensemble average obeys the following decomposition rules: 

(2) X=X+X\    XT = 0. 



The Favre average obeys the following decomposition rules: 

(3) X = (X) + X",    {X")=0,    X77 = X-{X). 

The application of the above averaging procedure on the instantaneous transport equations, decomposing the 

variables Favre mean and fluctuating components, produces the Favre averaged equations. The equations of 

motion are first rewritten in nondimensional form (with respect to reference values taken in the high speed 

stream: poo, ^oo, Too, Moo and the inlet value of the vorticity thickness 5W). Using these reference quantities, 

we define the relevant nondimensional parameters: the Reynolds number Re = /9OO"OO<WMOO5 the Prandtl 

number Pr = Cpßoo/X, the mean flow Mach number M = Uoo/y/^fRT^, 7 is Cp/cv. For this study, Pr = 1. 

2.1. First moment equations. The mass conservation equation reads: 

and the conservation of momentum is: 

dp(Ui)  ,  dp{Ui)(Uj) _    &p{u'!u'<)      dp   ,  däjjju) 
^ ' dt dxj dxj dxi        dxj 

Note that the stress tensor notation is changed to CTJJ(U) = j£[Sij(u) - ^Spp(u)Sij] = 2p,S*j(u)/Re. For the 

strain rate Sij(u) = \{^:Jr ^r) and for all the other linear differential operators, this new notation is more 

suitable when investigating compressible flows. In these instances the two types of averages, having different 

properties with respect to the linear differential operators, are naturally encountered. Hereafter any tensor 

with a star superscript will indicate the deviator - the traceless portion of that tensor. 

Two supplementary hypotheses pertaining to the molecular transport of momentum are set forth: the 

viscosity fluctuations are unimportant and the mean viscosity (n) is described by the Maxwell-Rayleigh law, 

i.e., it varies with the mean temperature as (/i)//xre/ = ((T)/Tre/)
m, m = 0.76. The fluctuations of the 

viscosity and their correlation with other variables are neglected. Within the current notation the averaged 

stress ~äji(u) is equal to aji{{u)) + <Tji(u"). 

The Favre mean of the total energy of the fluid et = T/[j(f - 1)M2] + UjUj/2 obeys: 

(6) dt    +      8Xj       -      dxj dxj     +dxj
[Uia^[U)    pU>h 

As is the situation with the momentum equation, the molecular flux term in the energy equation introduces 

the other type of mean quantity present in the Favre formulation - the plain ensemble mean. Using the new 

notation, the heat flux 

Qj^ = ~ (7 - l)RePrM2 dx~ 

has the resulting averaged expression: 

^(T) = qj((T)) + qj(r). 

The remaining terms on the right-hand side of the energy equation can be expanded by using the equation 

of state in the average sense 

(7) P=^^- 



Then the pressure work term is of the form 

the viscous work term reads 

ÜWji{u) = (Ui)<Jji((u)) + {Ui)Uji{u") + ll"(Tji((u)) + U"i<jji(u") 

and the turbulent total energy flux is 

mo = i (u"u'!u'!) 
rp«r")+p(«X)(^) + p^^^ 

The fluctuations of transported quantities in turbulent flows are sustained via interaction between the mean 

gradients and the turbulence. The fluctuations will be characterized by length and time scales of the order of 

those of the mean flow and which, provided the Reynolds number is large, will be many orders of magnitude 

larger than the fine scales at which the molecular diffusion is important. Thus the form of the moment 

equations carried in the closure development for the computation of free shear flows will not include viscous 

transport effects. 

2.2. Second-order moment equations. The average of the first moment of the Favre decomposed 

Navier-Stokes equations produces the following second moment equations: 

at + öp(«>   ,  drP{u'!u'j){uk) 

dxk 

a 
dxk 

?««') +P'u'!6ik +rfu'!6jk - u'!akj{u") 

,l^
dM^^f^^^l wn ~ *<«>-<fer - *w>-£r+' U£+&r' - "^ -u' 77 dP     ^n dP 

1 dxj       i dxi 

(8) 
^dakidu)) + —dakj((u)) 

j     dxk 
l     dxk 

^k(u")P- + aki(u")p- 
dxk dxk 

It is necessary to provide a closure for two compressible quantities: the pressure-strain correlation and the 

mass flux/pressure gradient (the last three terms in the second line). The molecular diffusion terms are 

generally small in high Reynolds number flows and will be negligible for problems addressed here. It should 

be pointed out that, depending on how the derivation is done, the mass flux terms multiply the acceleration 

of the mean flow. For this reason the mass flux terms are often called acceleration terms: they appear to be 

important in accelerating mean flows. 

Various tensors are divided into their traces and their deviators. The production of the Reynolds stresses 

becomes, 

(9) {UiUk} dxk   +{UkUi} dxk      3{UkUl} dxk
Ö- 

P* = Pa - -Pia = -p 

where P is the production of (k). The pressure-strain covariance is written as 

2 
(10) m Ui paotJ -p -i- p        oly dxj      dxi J     3   dxk 

The viscous and pressure acceleration terms are written, respectively, as 

(11) V* Vi. -3vstj 
jjdaki((u))     —dakj((u))     2-77dqfc;((?x)) 

dx k 
+ K dxk ~zu' dxk 



and 

(12) Ml, = Mij - -MSa = Uidxi
+U'dxi     Z

Ukdxk
6%3 

Note that the mean pressure gradient appearing in Mtj and the mean viscous stress appearing in Vy can be 

replaced using the mean momentum equations. In which case they are written in terms of the mean flow 

Lagrangian acceleration. Both of these terms involve the mass flux; any closure for these two acceleration 

terms requires a closure for the mass flux. The dissipation is rewritten as 

(13) P 4j = P l £ij rs->)=**<»">£+<*<«">§ - f *»<»">g*« 
In turbulent free shear flows the viscous diffusion part is overlooked owing to high Reynolds numbers which 

are characteristic to these flows. The present analysis can accommodate the discarded viscous terms when 

necessary; the tensor Vy will be carried for generality. Furthermore, the turbulent transport terms are 

considered together: 

(14) J-ijk — j3««> +P'<5ik +P'u'l8ik - u'!akj{u") - u'!aki(u") 

The Reynolds stress or second-order moment equations are then written 

ap(u'fu'j) , &p(u^)(uk) = _d_ 
dxk at + 

dxk 

(15) 

Tijk + Pts + n*- + M*j + V*j - ~p i% 

+l[P+Pfd + M + V-pe]5ij 

The equation for the anisotropy. The single point anisotropy tensor, a, is defined 

(16) an = «<>/<fc> - 3% 

The anisotropy has zero trace. Note that the Reynolds stress has been normalized by (k) and not 2(fc); 

in which case this version of the anisotropy is related to an older definition by a^ = 2bij. The turbulence 

time scale is r = (k)/es where es is the solenoidal dissipation. The second invariants of the mean strain and 

rotation are denoted by a2 = 5^((u))5jj((u)) and w2 = toij((u))£lij({u)). 

For subsequent manipulations used to derive an algebraic stress closure in §4 we replace the second-order 

transport equations with an equation for (k) and the anisotropy tensor. The following form of the transport 

equation for the anisotropy tensor, [21], will be used: 

rap 
Da,ij/(Tcr) 

~Dt 

dTijk     («> 8Tk 

(k) [ dxk (k)    dxk (k) 

m 
dxk 

.m 
dxk 

1 +— \p* + n*- + M*- + v* 
(k) "•   °        J 3        3 ■ p <i\ - 

(17) 
_Oi-7 

p es     a Dt p es 

where D/Dt indicates the mean Lagrangian derivative, D/Dt = J^ + (uj)gf-- 



The kinetic energy equation. The equation for the turbulent kinetic energy (k) = (u"u")/2 is 

8p(k)  ,  dp(k){Ui) 

dt 3 J 

,.//..//\9(u*> 

The additional terms reflecting the compressible nature of the turbulence are on the last line; they are, 

respectively, the pressure-dilatation covariance, the mass flux - mean acceleration, and the compressible 

dissipation. Note that neither the pressure-strain nor the mass flux/pressure acceleration terms, Mij, appear 

in the (k) equation. The effects of the pressure-strain and the Mij, appears only in the Reynolds stress 

equations. Any classical two-equation turbulence model cannot, as a consequence, account for the physics 

associated with these two unknown covariances that lead to changes in the Reynolds stress structure. Early 

approaches accounting for the effects of compressibility have focussed only on the effects of compressibility 

as they occur in the energy equation. This so-called "energetic" approach, to use the phrase of Simone et al. 

[9], for the effects of compressibility misses the changes in the Reynolds stresses due to compressibility and 

inertia. It is for this reason that, in §3, the second-order equations are closed. An algebraic Reynolds stress 

closure is then derived in §4. In this way the structural effects of compressibility, for a certain class of flows, 

can be accounted for in the context of a two-equation single-point closure. 

The dissipation equation. The dissipation appearing in the kinetic energy equation is typically written, 

for locally homogeneous flows, 

. du'! 
(19) a^u"}~frt =PI = P^+ ^ = 2^% KW"") + 3^jb(«") 

[4, 6, 29], with Ojj(u) = §(§^- - §^f) as the rotation rate.   It is customary to compute the solenoidal 

dissipation from the incompressible k — e model extended to variable density flows: 

(20) -%T + 
dp es     dp es(uj) d 

dt dxj dxj 

'     „ /i des 

^^-R-edxl, 

■2 

-    GeiP{k){uiUj) d^      Ce2p{k), 

where C6l = 1.44 and Ce2 = 1.92. 

3. Compressible closures for the second-order moment equations. This section describes the 

development of closures for the unknown terms in the second-order equations. The pressure-strain covari- 

ance appearing in the Reynolds stress equations is closed using a linear tensor polynomial representation 

in the Reynolds stress following well established procedures similar to Launder et al. [30]. In recogni- 

tion of the minor role viscosity plays in high Reynolds number free shear flows, only pressure-strain and 

pressure-acceleration closures are addressed. The pressure-acceleration terms are closed using a leading or- 

der [isotropic] gradient transport expression for the mass flux. The following section, §4, uses the results of 

the present section to obtain an algebraic closure for the Reynolds stresses. 

3.1. A closure for the pressure-strain covariance. In incompressible turbulence the closure of the 

pressure-strain covariance by a tensor polynomial linear in the Reynolds stresses is used with notable success 

for simple two-dimensional mean flows. The procedure is standard; a popular early reference is Launder 

et al.[30]. An updated version of the linear [30] rapid pressure-strain modeling is given in Speziale et al. 

[31]. As the ultimate goal is to devise an algebraic Reynolds stress model only pressure-strain models linear 



in the Reynolds stresses will be considered. A discussion of nonlinear rapid-pressure-strain model and the 

need for realizability can be found in [32]. Additional discussion of the physical assumptions underlying such 

methodologies can be found in [33], [34] and [35]. 

The compressible correction to the pressure-strain covariance representation is obtained using established 

linear procedures. As in the incompressible situation, [30, 34, 32], the pressure strain-covariance closure can 

be written as: 

(21) Uij ~ P cy = Mi + 2-p [Xpiqj + lpjqi][Spq({u)) + ftp,««»]. 

Such an expression is possible if the supplementary compressible terms appearing in the Poisson equation 

for the pressure (see Appendix) are, in the weakly compressible limit, of higher order. This will be the case 

if the evanescent wave portion of the initial value problem is not important as is the case for aerodynamic 

applications, [36]. The tensors in the above decomposition are modeled as: 

x. 
(22) Aij = -dp eaij + App-^- 

-jj^- = atiÖqiSpj + a.2(öpqöij + SgjSpi) + ßlöpjügi 

(23) + ßli^pqO-ij + öpidgj + Sijüpq + ÖjgCLpi) + ß^Sqiüpj 

Here lpjqi, following precedent, is linear in the Reynolds stresses satisfying necessary symmetry requirements. 

There are five unknowns. To determine the coefficients in lpjqi additional constraints are required. As is 

the usual procedure, the normalization constraint, [30, 32], requires 

(24) XPPqi = [(3oi + 2a2)6qi + (3/3i + 4/?2)agi] (k) = (u'^) 

which can be satisfied if 

3ai + 2a2 = 2/3 

3/3i + 4ft = 1- 

There are now three unknowns and additional information is required to obtain them. 

In incompressible turbulence modeling the trace of the pressure-strain is zero, lpkqk = 0, and this provides 

the additional information to determine the unknowns. In compressible turbulence the trace of the pressure- 

strain is the pressure-dilatation and the so-called continuity constraint becomes 

(25) Akk + 4p lpkqk[SPq + ftp,] = 2prd. 

As the right hand side, pd, is known from earlier energetic approaches to the compressible turbulence model- 

ing problem, the continuity constraint, equation (25), becomes a constraint that determines the coefficients 

in the pressure-strain closure. Note that as pd vanishes with turbulent Mach number the incompressible 

limit, Akk + 4/5 Tpkqk[Spq + ftp,] = 0, is recovered for vanishing compressibility. 

As a consequence of the continuity constraint a certain combination of coefficients appears in the final model. 

These are readily defined by a portion of (25) such that 

(26) 1Piqi/{k) — (ai + 4a2)6Pq + (ßi + 5/32 + ßz)apq - diSpq + d2apg. 



The final model for the compressible portions of the pressure-strain is then written in terms of d\ and 

d2. The values of d\ and d2, as will be indicated shortly, are then determined by the expression for the 

pressure-dilatation. The values of the on can be related to the df. 

ai = -di/5 + 4/15,   a2 = 3di/10 - 1/15 

ßi = (15 + 6C2)/33,  /?2 = -(2 + 3C2)/22 

ßz = d2 + C2/2. 

and C3 = (5 - 9C2)/11, C74 = (1 + 7C2)/11. 

Application of the normalization and continuity constraints then allows the linear pressure-strain model to 

be written as 

u*j - P 4 = ~CIP eaij + PW 

[I-C3 + 2d2] 

1 + 1^)^.««))+ 
2 

aipSpj{{u)) + Stp((u))apj - -^.««»o^y 

4 
(27) [l-Ci-2d2}[aipQ,pj((u))-0,ip((u))apj] +-d^Sppdu^aij 

which follows from (21) after subtracting the pressure-dilatation from the left side and the pressure-dilatation 

model from the right side of (21). All terms involving the d( represent corrections due to the compressibility 

of the fluctuations; the d, vanish as the turbulent Mach number vanishes. The terms involving the Q 

come from the incompressible pressure-strain model. In which case the choice of the C* allow one's favorite 

incompressible pressure-strain model to be used. The above expression for the pressure-strain is used in 

calculations presented in this paper. The calculations in this article are of standard test flows and are very 

simple flows. In more complex flows realizable issues may need to be incorporated. A realizable form of the 

model is given in an Appendix; more details can be found in Adumitroaie [37]. 

3.1.1. Commentary. It has been seen that the knowledge of one invariant of the pressure-strain, 

the pressure-dilatation, and the assumption of a form linear in the Reynolds stress allows one to obtain a 

model for the deviatoric components of the pressure-strain tensor. In this way an independent new theory 

for the compressible pressure-strain can be avoided by using the results of developments for the scalar 

pressure-dilatation. The results of previous so-called energetic approaches, Simone et cd. [9], to the effects 

of compressibility is built into the deviatoric portion of an expression for the pressure-strain. 

This point merits consideration from another point of view. Consider, for the moment, the following partition 

of the pressure-strain: 

              2— 
(28) psij = ps*tj + -pdSij. 

For this subsection, the primes on p have been dropped. Here by s*j we now mean the deviatoric portion 

of the fluctuating strain, s^- = 0, which contains solenoidal and compressible contributions s*j = s*j + s*!?, 

where, of course, s*j = sf ■. This is done for ease of presentation; in the nomenclature of §2 these quantities 

would, of course, be represented by S*j(u") a precision unnecessary for the present discussion. Thus one can 

write 

       /       c       2  
(29) psij=ps*ij    + psfj     + -pdSij. 
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The term ps*. is closed using standard incompressible pressure-strain closures. The pressure-dilatation 

is closed using models already in the literature, see §3.2 below. In §3.1 an expression for ps|p has been 

obtained. 

As has already been discussed in energetic approaches, the pressure-dilatation cannot account for the suppres- 

sion of the turbulence by the reduction in the shear stress as is seen in compressible flows. A straightforward 

extension of the energetic approach to the second-order closure level implies 

       /       2  
(30) psij = ps^j    + -pdSij. 

Such an expression, as is consistent with [13, 18], is likewise unsuccessful in reducing the turbulence shear 

stress. As will be discussed further in §5 the pressure-dilatation is a small quantity and has a nominal 

effect, for a « 1, on the turbulence stresses and energy when it is included in the spherical portion of the 

pressure-strain. Our procedure, using the pressure-dilatation, produces an expression for the compressible 

contribution to the deviatoric portions of the pressure strain, ps^ . In fact, as was born out by computational 

experiments, had the expression 

(31) pstj= P^tj    +P4j 

[without pd on the diagonal] been used in the numerical investigations reported in §5, our results would not 

have changed much, for a < 1. 

3.1.2. Pressure-dilatation models. To obtain the final form of the pressure-strain an expression for 

pd is required. There are some choices. Some proposals for pd require the solution of transport equations 

for the density variance [5] or pressure variance [7]. There are two pressure-dilatation models [8, 38] that do 

not require separate equations. The model of Sarkar [38] is: 

(32) in„„. wi = -3>aM,i (^ - &nws„ + ^ - g -P U 

where %i =0.15, xi = 0.2, and %3 = 0 (still to be determined by the author). Note that the model as we 

have grouped the terms makes it appear as if it is singular in Mt; it is most definitely not singular. The 

model of Ristorcelli [8] is 

Jd = -XM?[P -pe + Tk- \MHl -l)(Pr + pe + TT)} 

(33) -p(k)M?x m '- 

dlpd i   1pd 
X = l + 2IpdM? + llpdMt1(1-lY    X ~ l + 2IpdM? + ppdM?1(1-iy 

(34) Ipd = lit + rpd [3a2 + 5a,2] , Fpd = 1 (|)' a27[. 

Here a is the proportionality constant in the Kolmogorov scaling; we return to this in more detail below. 

These two models, as well as a third (the Aupoix model), have been discussed in [39]. 

The di are determined by the pressure-dilatation model. For the Sarkar model, one requires that 

(35) dl = ^, d; - *lM< 

where 

2 
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(36) 

For the Ristorcelli model one requires that 

(37) di 

A pp 
X2M?pes. 

XM[   d  = XM? 

(38) ^=XMt
2[p6+^Mt

2
7(7-l)(Pr + pe)] p(k)M?x- Dt 

Transport terms have been neglected; this is necessary to obtain an algebraic closure [which requires ho- 

mogeneity]. The compressibility of the turbulence will only be important where the turbulence energy is 

large [and thus also Mt], which is typically in regions of large production and where transport is not as 

important. Which is to say that transport is only of importance in the peripheral regions of simple flows - 

regions where the turbulence intensity is low, production low, and [therefore] the fluctuations are essentially 

incompressible. 

3.2. The mass flux and pressure-acceleration closures. The models for mass fluxes have not 

undergone much development and their importance in a general flow is not fully understood. Judging from 

the equations one can infer that the mass flux will be important in accelerating flows with large density 

gradients. There has been some research on the mass flux: [5] solved its transport equations and Ristorcelli 

[40] showed how an algebraic model for the mass flux can be obtained from its transport equation: 

(39) pu'! 
dim) 2d{ui)d{uk) 

^0% + ViTu-^- + V2T£ 
dxj dxk   dxj <"»S 

where TU = Mjr/[1 + ^-{P/(p e) — 1)]. Here vo, v\ and v2 are the coefficients retrieved from the inversion of 

the matrix Gtj = % + TU^-: V0 = -(1 + IG + IIG)^2, v\ = (1 + IG)"2, ^ = (1 + ib + HG + Hid)'1, the 

Roman numbers representing the invariants of G. Note that the leading order term is a gradient transport 

model. For an isotropic turbulence, an eddy viscosity formulation is possible. For the present set of simple 

benchmark shear flows, one does not expect the mass flux terms to be very important - the mean flow does 

not accelerate much. We shall for the sake of simplicity use the eddy viscosity form of the mass flux - 

the lowest order contribution in the polynomial given above. This is consistent with the gradient transport 

model used in [11]. 

The baroclinic dyad, a tensor product formed from the mean density and pressure gradients, is defined as 

(40) Hi- 
dp dp 
dxi dxi 

and the mass flux/acceleration terms in the second-moment equations can then be written, using the leading 

order portion of 39, as 

(41) 

where R*i;j = Kij + TZji - \(JlPp5ij. 

12 2 12 
M*ij = --7.Tuv0{k){Tlij +Hji - -Hppöij) = ---Tuj/0(fc)i& 

P ö O p o 
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3.3. The compressible dissipation. There are several models available for the compressible dis- 

sipation, [4, 5, 6, 8]. Many of these models reflect certain assumptions regarding the importance of the 

compressible dissipation observed in early DNS of compressible turbulence. The compressible dissipation 

has since been found to be less important than originally believed. In fact, the low turbulent Mach number 

asymptotics of [8] indicate it varies inversely with the Reynolds number and as a consequence is negligible in 

engineering flows, though not in low Reynolds number DNS. Compressible dissipation models are nonetheless 

included for completeness. 

As the Taulbee and Van Osdol [5] compressible dissipation model requires additional transport equations, 

in the spirit of computational simplicity, that model will not be used. The closure proposed by Sarkar et al. 

[6] is based on ideas from linear acoustics and appears related to the initial value problem, [36]. It can be 
written as 

(42) ec = 3asesM? 

with as = 1.0 from DNS of decaying compressible turbulence; unfortunately this arrangement was deemed 

to lack universality [19]. Zeman [4] provides a model on the grounds that eddy shocklets occur in high speed 

flow and relating this assumption to the dilatational dissipation: 

(43) ec = 0.75(1 - exp {-[(|(1 + 7)Mt - 0.1)/0.6]2})es 

It has been shown by Blaisdell et al. [41] that Zeman's model gives incorrect scaling between es and ec. 

Besides, the exponential dependence on Mt
2 delivers a steeper growth rate reduction compared to other 

models. 

As has been mentioned in more recent DNS studies, [9, 14, 15, 42], have demonstrated that dilatational 

covariance closures with a Mt
2 scaling predict effects of compressibility when they are, in fact, very small. 

In an asymptotic analysis, Ristorcelli [8] has found that the compressible dissipation has an Mt
4 dependence 

and is inversely proportional to the turbulent Reynolds number: 

^3+ (^)2[13<,2 +15c2] r2a2/[ (44) 

The parameters are I( = 0.3, 7| = 13.768, JJ = 2.623, I[ = 1.392, JJ = 3 and ar = 0.4-4 is the 

Kolmogorov scaling coefficient. Also, Mt denotes the turbulent Mach number, that is Mt
2 = §(fc)/c2 and Rt 

the turbulent Reynolds number Rt = )ö4(fc)2/(9es/u)i?e. The local speed of sound is given by c2 = T/M2. 

For high Reynolds number flows, in the absence of wall effects, viscous diffusion is negligible. 

At this point the Reynolds stress equations have been closed and it is possible to compute the flow using a 

second-order closure. This is the subject of §5. However, there is a wide class of flows of engineering interest 

that can be treated using simple algebraic Reynolds stress models. An algebraic closure for the Reynolds 
stresses is therefore first developed. 

4. A compressible algebraic Reynolds stress model. A quasi-explicit algebraic model for the 

Reynolds stresses is now derived. An algebraic Reynolds stress model comes from the fixed point solution 

of the evolution equations for the anisotropy tensor.   These equations can be thought of as describing a 
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turbulence in a state of structural equilibrium: the fixed point solution corresponds to an exact solution of 

the Reynolds stress equations. 

Several permutations of quasi-explicit algebraic Reynolds stress expressions exist:[20, 21, 22, 23, 24, 25, 26, 

27, 28]. The qualifier "quasi-explicit" is used to indicate that, as the fixed point equations are nonlinear, 

the solution is given implicitly. A notable exception is the recent explicit algebraic model of Girimaji [28] 

who has found the exact nonlinear solution to the fixed point equations. The inception of our work predates 

[28] and our procedure follows precedents set by [20, 21, 26]. The polynomial representation methods will 

be used to obtain two-dimensional and three-dimensional versions of the algebraic turbulent stress models. 

We use the ansatz introduced by Taulbee [21], to obtain the fixed point equation corresponding to the 

differential equation: the Lagrangian derivative in (17), 

D ,üi 
(45) 

Dt  lT(TJ o, 

is set to zero, which allows relaxation effects to be built into the Reynolds stress model. Equation (45) allows 

a relaxation of the anisotropy to its equilibrium value at the same rate that the relative strain relaxes to 

its equilibrium value, [21]. The combination of transport terms in (17) is set to zero following established 

algebraic stress modeling procedures: 

(46) 
1 

(fc) 

dTijk («> dTk 

dxk (k)    dxk\     (k) 
m 
dxk dxk 

0. 

Applying these approximations results in a quasi-linear tensor expression for the anisotropy. 

H&i = !-!di,&2 1  2 

(47) 

Wo, h = C3- 2d2, b4 = C4 + 2d2, and 

T Da     IT , 
Ciir- + Ce2 - 2 + (2 - CC1)— + -— + —(1 - 2d2)Spp((u)) + 2 

es p ts     a ut      6 

M+p'd- p ec 

P es 

-l 

the algebraic fixed point form of the Reynolds stress anisotropy equation is written 

(48) -9T 6xS* + 62R* + h ( aS* + S*a - -{aS*}<5 bi(a.n — fia) 

where the curly braces signify the trace. Prom this expression it is seen that the anisotropy tensor 

(49) ay=ay(S*,n,R*) 

is dependent on three second order tensors, two symmetric and one skew-symmetric. 

4.1. A three-dimensional algebraic Reynolds stress model. Standard representation theory 

methods can be applied to obtain the solution ay = ay(S*, ft, R*) to (48). In contrast to the incompressible 

case the solution of (48) is now much more difficult inasmuch as the procedure now involves an additional 

tensor. Following standard methods the solution can be expressed as a finite 3-D tensor polynomial, 

(50) srcxT* 

comprised of a linear combination of all the independent tensor products (generators) formed from the three 

primary tensors. The coefficients in the polynomial are functions of the independent invariants of the tensors. 
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For this problem the dimension of the [minimal] tensor base is A = 41 (cf. Spencer [43]). This is very large 

and is unlikely to be used in practice. 

The complexity presented by such a large tensor basis can be side stepped by simplifying approximation 

regarding the 63 term. It has been argued [21, 27] that for the range of values used for the constant C2 the 

inequality C3 <C C4 holds and thus the term multiplied by C3 will only have a small effect on the solution. 

This approximation decouples the contributions of S* and R* to a. As the equation is linear the solution 

is determined using the superposition principle. This one allows to split the problem into two equations of 

lower tensor base dimension: 

(51) a = as + aR 

where as stands for the solution dependent on S*, 

(52) as = -gr [61S* - 64(a
sfi - fias)] 

and aR denoting the solution dependent on R* 

(53) aR = -gr [b2R* - b4(a
R£l - QaR)] . 

The decomposition of a into portions dependent on S* and R* is unique. 

Applying the results from [21] the strain dependent portion of the solution for the anisotropy tensor can be 

written 

as = -2<VS* - 4a2T
2(S*ft - CIS*) - 8a3r

3(fi2S* + S*02 - |{S*fi2}5) 

(54) -16a4r
4(£2S*ft2 - f22S*ft) - 32a5r

5{S*fi2}(fi2 - \{n2}S) 

where C^ = hg(l + |/i§w2)/ii, a2 = ^hb4g2h2, ot3 = |&i&^p3/ii, a4 = -§6i&404'li> a5 = f&i&405/ii, 

ho = b4gr, hi =h2[l + 2/igw2]-1 and h2 = [2 + /igw2]-1. 

Using a similar procedure the portion of the Reynolds stress anisotropy dependent on the baroclinic dyad is 

written 

aR = -2<VR* - 4a2T2(R*ft - OR*) - 8a3r
3(ft2R* + R*ft2 - ^{R*S72}5) 

(55) -16a4T4(fiR*ft2 - Cl2TL*n) - 32a5r
5{R*02}(ft2 - Utl2}6) 

Ö 

in which the coefficients have the same form as those in as with the exception that b\ is replaced by b2. To 

obtain the full anisotropy tensor the two complex expressions (54) and (55) need to be added. In the light 

of the complexity of the three-dimensional formalism a two-dimensional formalism is developed. 

4.2. A two-dimensional algebraic Reynolds stress model. A simpler and tractable two-dimensional 

treatment is possible. In many engineering flows the mean flow and the statistics of the turbulence are two- 

dimensional. The two-dimensional problem is less complicated as the number of tensor products necessary 

to express the solution is substantially reduced. The symbols S, ft, R now denote two-dimensional tensors. 

It is necessary to recast the equation for the anisotropy in terms of the traceless 2-D tensors: SJ((u)) = 

Sij((u)) ~ |'Spp((u))^ij > B%j(piP) = Rij(p,p) — ^RppiPiPnj • Here, the two-dimensional Kronecker symbol 
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is ö^ = [Sip] = 1 for i = j = 1,2 and 0 otherwise. The pressure-strain model is then written: 

n*,- - P 4 = -CIP 
eaü + p(k) 

4 2J 

5 + 5dl 

[1-C3 + 2d2] aipS^Uu)) + S*p({u))apj - -Slq((u))apqSi:i 

[1 - C4 - 2d2][aipQpj.((U)) - &p«u»api]+ 

-d2Spp{{u))a,ij 
4 V - + -di 
5 5 

-SRP««» 

(2) 

3        2 

r JE' 

(56) 2[1 - C3 + 2d2] 
Opj       PJ 

**"     3 

The pressure acceleration is written 

(57) 

(2)' 
v5 
2 

r(2)\ 

3M     3 2       ,J S*fc«u» 

12 12 
J p 6 p o 

(2) 

3 2 

The fact that both 2D and 3D expressions of the pressure-strain correlation model must give the same result 

when applied to two-dimensional mean flows will be used for our simplifications. Recasting the model in 2D 

is done to take advantage of the simplifications that result from the 2D structure. 

Inserting the closures for the pressure-strain and mean acceleration terms, (56), (57) into the Reynolds stress 

equation, using the same ansatz regarding transport at a fixed point, the 2D analog of (48) is obtained: 

a = -gr hS* + b2R* + h (aS* + S*a - ^{aS*}(5 j - fc4 (all - «a) 

(58) -h    - Ö     6 (2)N 

3      2 
&e    a    - - 

6     <5(2)' 
3      2 

1/      6 

3\a    3 

;(2)N 

with 61 = |-|di, b2 = =F%TUVO, h = C3-2d2, b4 = C4+2d2, h = biSpp{(u))+b2RpP(p,p), b6 = 2b3Spp((u)) 

and g having the same expression as in the 3-D algebraic equation. The two-dimensional polynomial solution 

of (58) is, as before, also written as 

(59) YJC
XTX. 

Unlike the three-dimensional solution, however, the generators now consist of only five tensor groups: 

(60) 
3     2 

,     T1 = S*.   T2 = S*Ü-HS*,   T3 = R*,   T4 = R*Ü-S1R* 

for which there are five non-zero independent invariants, 

(61) *2i a2 = {S*},    w2 = -UT},    {R*z},    {R*S*},    {S*R*ft}- 

The fact that there are no other independent tensor generators [or invariants] can be verified using the 2x2 

matrix identity: 

(62) 

2abc = bc{a} + a{bc} + ac{b} - b{ac} + ab{c} + c{ab} - 

c{a}{b} - a{b}{c} + ({ac}{b} - {acb})<5(2). 

16 



To obtain the solution to the algebraic equations for the anisotropy tensor, (58), a procedure similar to the 

one devised by [20] is used. Three 5x5 matrices Hx, Jx, Ix, are defined: 

T"S* + S*T" - ^{T"S*}<5 = Vtt^T* 
3 A 

T"O* - Q*T> = £ J„ATA 

(63) - i-ri-?i- i-ni-E^ 
for which A = 0 - 4. The elements of the matrices are determined from the above equations by making use 

of matrix relations stemming from the Cay ley-Hamilton theorem. The 2-D tensor polynomial a = ^A CXTX 

is introduced in both sides of relation (58). By making use of the above matrix identities the coefficients of 

the tensor polynomials are found to satisfy the following system of equations: 

(64) -9T hsix + b2s3X + b3J2 cn\ -b4J2 WJI - MOA - 66 £ C217 

The solution of this system of equations determines the model coefficients in the following algebraic expression 

for the anisotropy tensor 

a = -2CMr 

(65) 

Q2S* + (Qi + Q3)b3gf2Ta2 ßö - <5(2)) + Q264<7/IT(S*£1 - £ S*) 

-2C'ßT [R* + &43/IT(R*0 - ft R*)] 

suitable for two-dimensional mean flows. The eddy viscosities, CM and C'ß, are given by: 

c   = 6i2/i/2 
(66) 

(67) C'„ = 

The Qi coefficients are given by 

(68) 

(69) 

03 

ß     1 - |(633r)V
2/i/2 + 2(64<?/ir)2u,2 

62S/1/2 
"" l + 2(64ff/ir)

2w2- 

{S*R*} ,   ,  {S*R*fJ} 

(70) 

(71) 

61 

0       1     2   (63gr)2a2/1/2 6365 
Q2==1+ 3l + 2(bi9flT)W{Ql ~1]~ W9hT 

b5   l + 2(bigflT)2u2 

6163        2gfiTa2 

with /1 = (1 + begr/6) 1 and /2 = (1 — b^gr/ö) 1. Note that the direct effect of compressibility as reflected 

in the baroclinic dyad occurs in Q\ and Q2. 

The high order of nonlinearity of the algebraic equations does not permit, in general, the construction of a 

fully explicit solution. Instead, an iterative approach is employed during the computations to generate the 

correct values. The algebraic solution is linearized by lagging the turbulence production term which contains 

the nonlinearity. 
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4.3. Discussion. To conclude this section some general statements regarding the behavior of the al- 

gebraic closure derived for the Reynolds stresses are highlighted. In §3 a closure for the Reynolds stress 

equations was obtained. In the present section the fixed point solution of the modeled second moment 

equations, under the condition of structural equilibrium, was obtained. For two-dimensional mean flows the 

compressible algebraic stress model can be symbolically written as 

(72) a = - vw S* - vtx [S*fi -OS*]- vt2[\^ - <*(2)] - *£, E* - *£ [E*Ü - O El- 

Note that products of the mean strain and the baroclinic dyad do not appear. This is due, for two-dimensional 

flows, to the relation T"S* + S*T7' - ^T^S*}« = -2{T'7S*}T0; the generator comprised of the mean strain 

and baroclinic dyad product is redundant. Examining the above expression, the following observations can 

be made: 

1. The first two terms are the same terms obtained in algebraic stress closure for two-dimensional [in 

the mean] incompressible flows. 

2. The first two eddy coefficients are functions of the relative strain and the relative rotation as is the 

case in incompressible flows. They are now also functions of the turbulent Mach number and the 

gradient Mach number. 

3. Neither of these eddy coefficients depend on baroclinic effects. 

4. It is seen that in the absence of mean velocity gradients that the turbulence is anisotropic due to the 

mean baroclinic dyad. This anisotropy manifests itself in the deviatoric as well as diagonal terms. 

It is useful to construct a simple example to see how the new effects influence the anisotropy. Consider a 

simple shear flow with a streamwise acceleration: let the Favre mean velocity, the mean density and the 

mean pressure gradients be represented by Ui,2, E/i,i, Vp = p#, and VP = P,\. 

2 11 
(73) an = - - vt0 UUi + - "« Uifl + 3 Vn + "*i U™ ^'2 P>1 

(74) a22 = g m Ui,i - - vtl \j\^ + - vt2 - vc
tx Uu2 p,2 Pi 

1 rr 2 

(75) ß33 = 0 m (7i,i - - vt2 

11 
(76) 012 = - - vva Ull2 -- vn Ui,2 Uia - v$0p,2 P,i 

Several observations regarding the above algebraic expression for the anisotropy can be made: 

1. The expression is the first [that we know of] rigorous indication of the direct role the baroclinic dyad 

plays in determining the Reynolds stresses. 

2. The expression indicates that, for arbitrary mean deformation, the mean baroclinic dyad contributes 

to the deviatoric portions of the Reynolds stress. 

3. The expression also indicates that the baroclinic dyad also changes the relative magnitude of the 

normal stresses. This effect only occurs for mean deformations that are rotational. For an irrotational 

mean deformation the baroclinic dyad makes no contributions to the normal stresses. 

4. For a uniform mean velocity the baroclinic dyad is a source of anisotropy but only in the deviatoric 

portions of the anisotropy. 

5. The expression indicates the inapplicability of any heuristic gradient transfer arguments for the 

Reynolds stresses in flows with important gradients of mean density and pressure. 
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While these results indicate the inapplicability of any form of eddy viscosity model for the stresses in 

compressible flows with arbitrary large density and pressure gradients some qualifications are in order. The 

presence of the baroclinic dyad is likely to be important only in rapidly accelerating aerodynamic flows or 

in combusting flows where one can expect the mass fluxes to be important. In the absence of these effects it 

appears that the parameterization of the Reynolds stresses in terms of powers of the mean deformation with 

modifications according to the compressibility of the fluctuations as those indicated in §3 is appropriate. 

5. Computational investigations of free shear flows. The theory and results presented in the 

previous sections are now implemented over a very wide range of mean flow Mach numbers in the simulation 

of free shear flows. Simulations using second-order moment (SOM) closures as well as the quasi-explicit 

algebraic models are conducted. The numerical experiments are constructed with the intention of investi- 

gating several different issues of relevance to the prediction of compressible turbulent flows for engineering 

purposes. 

In addition to assessing the sensitivity of the pressure-strain model to the different pressure-dilatation models 

we compare the computational results to what is expected from laboratory and numerical experiments. Of 

particular interest is the well known effect of compressibility on reduction of the spread rate of the mixing 

layer. The main objective is to assess the effectiveness of the compressibility corrections in reproducing 

the reduced growth rate of the free-shear layers with increasing Mach number - a phenomenon which is 

well documented experimentally [44]. We also study the adequacy of the algebraic stress closure with the 

results of the SOM simulations. In particular the Reynolds stresses and the anisotropy computed using both 

of these procedures are compared to solutions without the compressible corrections in order to assess the 

effects of the new pressure-strain closure on the anisotropy. Our intention is to further investigate the notion 

that the dramatic reduction of the mixing layer growth rate is due to the effects of compressibility on the 

pressure-strain and, consequently, its effect on the reduction of the turbulence shear stress. 

5.1. Numerical method. The simulations are conducted using a finite difference scheme, following 

[45], second-order accurate in time and fourth-order accurate in space. The governing equations are integrated 

explicitly in time using the predictor-corrector finite difference scheme developed by Gottlieb and Türkei [46]. 

The Gottlieb-Turkel scheme is a higher order accurate variant of the MacCormack [47] predictor-corrector 

method. During a numerical sweep, the inviscid fluxes are alternatively differenced backward in the predictor 

step and forward in the corrector step. Fourth-order central differences are used for the viscous and heat flux 

terms as well as for the derivatives in the source vector. To maintain stability, it is required that the CFL 

number be less than 2/3. To prevent numerical oscillations in regions of large gradients a smoothing scheme 

devised by MacCormack and Baldwin [48] is employed. The method, as outlined in [45], adds artificial 

viscosity that is very small everywhere except in the regions where the pressure oscillates. 

All simulations are conducted on a uniformly spaced grid in the computational domain. By means of 

a coordinate transformation the mesh is transversally compressed in the physical domain in the region 

corresponding to the mixing layer. 

The physical domain is a rectangular box defined by the set of points (x, y), in which x represents the 

streamwise coordinate and y the transversal coordinate. The grid overlaying the computational domain of 

size xSu x y5u has 100 x 60 points, where the vorticity thickness <5W = (ui — U2)/(d(u)/dy)max, the brackets 

() denoting the averaged value. In this nondimensionalization, the reference length scale is the magnitude 
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of the vorticity thickness at the inlet. The initial profile for the mean axial velocity is adjusted such that 

the resulting nondimensional vorticity thickness at the inlet is equal to one. The values of the physical 

dimensions are (x, y) — [80,20] for the mixing layer. To evaluate the grid sensitivity the number of grid 

points is increased by a factor of 1.5. The change in the steady-state values of the peak of the turbulent 

stresses is less than 2 percent. 

To accelerate convergence to the stationary state, a local time stepping technique is used. The convergence 

criterion is imposed so that the global averaged residual profile attained is stationary for each dependent 

variable. Although more stringent criteria can be sought, it is known, [49], that predictor-corrector schemes 

are limited in their ability to achieve very high rates of residual reduction. 

Due to the nonlinearity of the destruction terms, the k - e equations display a stiffness which can either 

generate numerical instabilities or increase the computational time. In order to avoid these inconveniences 

the turbulence source terms are treated implicitly. The k - e destruction terms are decoupled by suitable 

manipulation of the e/k ratio, considered as a known quantity from the previous time step. 

Initial and boundary conditions. The initial fields are obtained by propagating the inflow conditions 

throughout the entire domain; hence, the flow has to sweep the domain at least one time to obtain meaningful 

results. For ease of computation, the inflow initial conditions (IC) for the flow variables are assumed to be a 

smoothed step (hyperbolic tangents for the axial velocity or species) or a smoothed hat profile (for turbulence 

quantities). Uniform profiles are assigned at the inlet to the static pressure, to the static temperature and, 

by virtue of the equation of state, to the static density. 

The boundary conditions (BC) are set according to the elliptic nature of the problem on all four boundaries. 

The inflow BC are fixed (Dirichlet) for all primary variables in the supersonic and subsonic regions with one 

exception. For the portions where the flow is subsonic the pressure is allowed to adjust to the characteristic 

waves through a Neumann boundary condition. At the outflow and outer boundaries zero gradient (Neu- 

mann) conditions are applied due to their non-reflective properties in relation with the outgoing waves. In 

the mixing layer, the static pressure, temperature and density in the two free stream layers are matched. 

This isolates the contributions to the layer growth to those due solely to the variation of the reference Mach 

number. 

Free-shear flow parameters. The magnitude of the effects of compressibility are often parameterized by 

the convective Mach number [50]. In our formulation the expression for the convective Mach number is 

Mc = M(l - rv)/2, where r„ = U2/W1 is the axial velocity (u) ratio. A wide range of values of Mc including 

both subsonic and supersonic regimes are considered: 0.2 < Mc < 2.0. The convective Mach number is 

varied by keeping the velocity ratio constant and varying the reference Mach number M. The reference 

Reynolds number is Re = 5 x 106, while all the other nondimensional parameters are kept constant as well. 

The subscript 1 refers to the high-speed stream value, while the subscript 2 refers to the low-speed stream 

value in the mixing layer. No jet simulations are shown in this article; they can be found in [37]. 

In the results presented, the spatial coordinate, for the hydrodynamic variables, are given by 77. In the 

mixing layer, n = y~y("=0,5), where ü = ^~"2
2. Unless otherwise specified, the results shown are from 

computations [ARSM and SOM] with models based on the dilatational models of [8]. 

After an initial period of flow development a linear growth rate of the shear layers is attained. In the fully 
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developed regime, when a linear growth rate has been established, the mean velocity and the normalized 

Reynolds stresses display self-similar behavior. The spread rate of a turbulent shear layer, in the self-similar 

region, is conventionally expressed as d8u/dx = Cs(l — rv)/(l + rv) where 6U could be either the 10 percent 

visual thickness of the shear layer based on the normalized velocity profile or the vorticity thickness, and 

Cs is a constant (approximately). As the present article is concerned with compressible corrections to the 

turbulence moment equations no plots of the mean flow quantities are given; the mean field variables are 

quite typical and can be seen in the literature, [11, 51, 52]. 

5.2. Mixing layer simulations. The primary concerns of this article are with 1) a representation of 

the effects of compressibility as they appear in the pressure-strain covariance and 2) the construction of an 

algebraic Reynolds stress model useful for engineering calculations. Studies related to both these issues, for 

the Mc = 1.07 mixing layer configuration, are shown in the first two figures. The Reynolds stresses and 

the production/dissipation ratio obtained for ARSM and SOM calculations are shown in Figures 1 and 2. 

Also shown, as a double check, are curves based on an a priori evaluation of the algebraic stress model; 

the data from a SOM calculation is used as input to the ARSM. The neglect of turbulent transport in the 

algebraic stress model is reflected in differences in the normal stresses at the centerline. In general the a 

priori evaluated ARSM curves follow closely the computed ARSM values indicating that for this flow the 

neglect of transport in the moment transport equations is justified. The algebraic approximation is, as has 

been verified at several different convective Mach numbers, suitable for an investigation of trends in this flow 

configuration. 

Also shown in Figures 1 and 2 is the SOM computation without compressibility corrections [NC - no com- 

pressibility]. The effect of the compressibility corrections manifest themselves as decreases in the centerline 

values of (uu), (uv) and (vv) of approximately 16%, 25% and 24% respectively. This is consistent with that 

seen in DNS. In addition, the streamwise normal stress suffers a smaller reduction than the other Reynolds 

stresses. This, as will be seen, will manifest itself in an increase in the streamwise normal anisotropy. 

The production/dissipation ratio is shown in the bottom of Figure 2. The average level of P/e for the 

compressible case is smaller than the incompressible case; this is consistent with the reduced turbulent 

kinetic energy of the compressible flow. While the overall level of the production is smaller it is interesting 

to note that at one location in the mixing layer, the centerline, P/e is nominally higher. It has been 

conjectured that this might be due to the higher relative strain rates compressible flows may be able to 

sustain. This is an issue that further DNS may resolve. 

Figure 3 displays the vorticity thickness. Vorticity thickness spread rates as predicted by the SOM simula- 

tions, with and without (NC) the compressibility correction, are shown on the top of Figure 3. It is seen, 

that even with such modest contributions from compressibility, scaling as they do with Mt
2, a sizable change 

in growth rate is seen. The variation of Mt with Mc is shown in Figure 5. 

Figure 3 also displays the different components of the pressure-strain tensor computed from the SOM simula- 

tion with and without (NC) the compressibility correction. The different components of the pressure-strain 

are all reduced by about the same amount. This is precisely the behavior seen, in both direction and 

magnitude, in the recent DNS [15] - see Figure 4.18. 

Reynolds stress anisotropy. In Figure 4 the computed values of the centerline Reynolds stress anisotropies 

are shown. At low values of compressibility the anisotropy has values similar to that of simple incompressible 

21 



shears. At higher levels the anisotropy behaves very much like the compressible shear DNS; more of the 

energy of the turbulence is in the streamwise component as made clear by the increase in an. This is at the 

expense of the crosstream component, (vv), which is reduced. This is, as shall be discussed further, due to 

the reduction of intercomponent energy transfer due to the compressible aspect of the pressure-strain. There 

is also a reduction in the shear stress as is seen in compressible DNS. 

Comparisons with laboratory Reynolds stresses. The effects of the new compressible models on the 

anisotropy is shown in Figure 4. Unfortunately, in the laboratory situation, the spanwise Reynolds stresses 

are rarely measured. As a consequence the anisotropy is not known and one returns to primitive variables. 

The maximum values of diverse Reynolds stresses in the mixing layer are plotted as function of the convective 

Mach number in Figure 4. In this figure au and av represent, respectively, the (uu) and (vv) Reynolds stresses 

nondimensionalized by the square of the velocity difference across the layer. Also shown are the experimental 

results of Elliot and Samimy [53]. Underlying this comparison is, of course, the implicit assumption of 

self-similarity. The maximum Reynolds stresses decrease with compressibility. In the present simulations, 

however, the peak values of the turbulence intensities (axial and transverse) do not vary as strongly as in 

the laboratory findings of Goebel and Dutton [54]. In fact the present simulations are closer to the results 

of either [54] or [53] than either [54] or [53] are to each other. 

There appears to be a discrepancy. A survey of the diverse compressible DNS indicates that an increases with 

compressibility. This implies that (uu) decreases faster than (vv). [Figure 9 of [14] is the most comprehensive 

presentation of this trend.] This does not appear to be the case in the laboratory experiments. In the mixing 

layer of [53] (uu) decreases more rapidly than (vv) for all Mc implying that an decreases with increasing 

compressibility contrary to DNS results. In [54] (uu) decreases more rapidly than (vv) for low Mc; while 

at moderate Mc, (uu) decrease less rapidly than (vv) in accord with DNS results. No explanation for this 

discrepancy between laboratory and numerical data is known. 

The pressure-strain tensor. The effects of compressibility on the Reynolds stresses are believed to be the 

source of the dramatic influence on the spread rate as the convective Mach number increases. The physical 

mechanisms responsible for these phenomena were once believed to be the compressible dissipation and 

pressure-dilatation which caused a decrease in the Reynolds stresses due to an overall decrease in k. This 

was accompanied by no substantial changes in the anisotropy. As discussed in §1, recent simulations suggest 

that compressibility causes a turbulent shear stress reduction due to a reduction in its associated anisotropy. 

This is a statement that compressibility manifests itself structurally, not energetically. The reduction in the 

anisotropy leads, of course, to a reduction in k and ultimately in the mixing layer growth rate. 

More recent simulations, [9, 14, 15, 16] all seem to indicate that the major changes in the shear stress are 

due to the effect of compressibility on the pressure-strain covariance. Figure 6 is an illustration of this idea: 

Figure 6 depicts the different components of pressure-strain tensor and its trace [the pressure dilatation] at 

the centerline of the mixing layer. Figure 6 is patterned after Vreman et al. 's [14] Figures 3 and 9. The 

behavior of all the components of the pressure-strain, shown in Figure 6, are very much in accord with the 

figures of [14]. The only notable difference is the relative levels of IT22 and II33. The trends are very much 

the same and the relative behavior - a commensurate across the board reduction with Mc - is very much in 

accord with [15]. 
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The behavior of the pressure-strain illustrated in Figure 6 is very much in keeping with the current under- 

standing of the mechanism for the reduction of the turbulence energy by the reduction of the shear stress: 

the only source for the kinetic energy is in the (uu) component and its production is proportional to (uv). 

The reduction [in magnitude] of uu and II22 means that less energy generated in the (uu) equation is 

transferred to (vv) [by Ifo]- As (vv) has no production (vv) is much smaller. As consequence of the fact 

that the production of (uv) is proportional (vv) much less (uv) is produced and much less (uu) is produced. 

This can be seen by the considering the truncated forms of the second-order moment equations: 

(77) -p^ (uu) ~ - (uv)UU2 + nn + ■••■ 

(78) -^ (w) ~  n22 + .... 

(79) J)i(uv) (w)Ui,2 +II12 +  

The thesis of [15] provides a schematic of the above process. The behavior of the Reynolds stresses and 

the pressure-strain indicated by Figures 2 and 6 is consistent with the mechanism for the reduction just 

delineated. Specifically, the fact that less of the (uu) energy is transferred to the other components of the 

Reynolds stress means that the anisotropy, an = 2bu, must increase as seen in all the DNS. Note also 

that the pressure-dilatation as derived by the asymptotic procedure in [8] is extremely small; negligible 

in comparison to the pressure-strain. Yet its use to obtain the deviatoric portions of the pressure-strain 

produces a very sizable reduction in the shear stress and the growth rate. 

Gradient Mach number. Sarkar [16] and earlier work cited therein have drawn attention to the gradient 

Mach number as a potentially useful parameterization of the effects of compressibility. Many of the effects of 

compressibility, as indicated by diverse DNS, have been observed to become more apparent as the gradient 

Mach number increases. Shown in the bottom of Figure 5 is the gradient Mach number using the definition 

Mg = |Mt<r(fc)/es. The definition of the gradient Mach reflects the fact that the Kolmogorov scaling, 

e ~ (k)3/2/t has been used to eliminate the length scale in the definition Mg = cr£/c. In DNS, the length 

scale I is determined from the two-point correlation; no such opportunity occurs in single-point closures. 

Both the DNS, for example Figure 4.29 in [15], and the SOM simulation indicate a similar decrease in rate 

of increase of Mg with Mc. The decrease seems to occur at lower Mc in the DNS. This is likely to be related 

to the different length scales used. 

One of the noteworthy observations made of the effects of compressibility is their tendency to saturate, [11]. 

In the bottom of Figure 5 the rate of increase of the maximum turbulent Mach decreases at higher convective 

Mach numbers. This is line with observations of [11]. 

Kolmogorov scaling. While in DNS a length can be determined from the two-point correlation, no such 

possibility exists for single-point closures. Yet a length scale, reflecting the two-point nature of the turbulence 

problem, is required. The length scale appearing in the Kolmogorov inertial range scaling, e ~ (k)3/2/£, was 

used in [8]. 

There is a proportionality coefficient, a, in the Kolmogorov scaling a = es£/(2k/3)3/2. For infinite Reynolds 

number isotropic turbulence a ~ 1. For finite but large Reynolds number anisotropic turbulence undergoing 

deformation the Kolmogorov scaling is likely to be useful but a is likely to be a flow dependent quantity. 

Sreenivasan [55] has made some studies of the variation of the Kolmogorov scaling coefficient: [55] has found 
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values of a ranging between 0.4 - 2 for diverse incompressible simple shear flows. To allow for the expected 

variability of a two different values of are used in many of the simulations. The value of a does not change 

any of the trends and does not seem to have too strong an effect on the energy at the centerline as seen in 

Figures 4 and 5. It does however effect the mixing layer spread rate as can be seen in Figure 8. 

Mixing layer growth rates. Settles and Dodson [44] have compiled a very large number of experimental 

results. These are shown in Figures 7 and 8. The experimental curves come from the experiments of 

[50, 54, 56, 57, 58, 59, 60, 61]. The scatter in the data reflects the fact that different experiments are done in 

different wind tunnels, with different inlet configurations and with different reservoirs. The computational 

curves shown in Figures 7 and 8 reflect two different but complementary investigations. As the "Langley 

curve" [62] has been a popular benchmark it has also been included. The well known reduction in the mixing 

rate with increasing Mc is seen in all the data. 

Figure 7 reflects computations using the "energetic" approaches. Ak-e scheme has been used to calculate 

the mixing layer growth and the only compressible corrections are in the k equation; the Reynolds stresses are 

closed with the usual incompressible eddy viscosity [Boussinesq] approximation. The compressible dissipation 

and pressure-dilatation models of Zeman [4], Sarkar et al. [6, 38], Ristorcelli [8] are used in the k-e scheme. 

Figure 7 indicates that the results based on the models of Zeman [4], and Sarkar et al. [6, 38] capture 

the mixing layer reduction. The reduction of the mixing layer growth rate has been captured by similar 

mechanisms in both models; most of the suppression is provided by a substantial amount of additional 

dissipation that comes from the compressible dissipation models. As was pointed out in §1, the compressible 

dissipation, as has been indicated by DNS and by asymptotic analysis, is not important in these flows. Any 

arbitrarily dissipative term added to the k equation, appropriately calibrated and scaled, would produce such 

agreement for the mixing layer growth. Moreover, as with all energetic approaches, there is no possibility of 

accounting for the very important structural changes that appear in the anisotropy. 

As indicated by Figure 7 the pressure-dilatation model of [8], with a = 2, accounts for a nominal suppression 

of the growth rate. The compressible dissipation being negligible in analysis of [8] is not included in this 

calculation. From incompressible DNS, [63] it can be argued that a value of a « 1 might be more appropriate. 

As the pressure dilatation scales with a2 a value of a « 1 would decrease the pressure-dilatation effects by 

a factor of four. 

Figure 8 reflects a computation using the compressible algebraic Reynolds stress model. This is exactly the 

same computation as given in the Figure 7 with the exception that the algebraic Reynolds stress approxi- 

mation now includes the effects of compressibility in the pressure-strain covariance representation used to 

close the second-moment equations. Note the substantial changes on the layer growth rate prediction that 

include the effects of compressibility on the Reynolds stresses produces. The change is more drastic for the 

Ristorcelli modeling than the Sarkar modeling; this is to be expected as the majority of the growth rate 

reduction using the earlier Sarkar modeling was built into a dissipative term and the relative change is small. 

The algebraic model built upon dilatational closures of [8] shows improvement over the results from a simple 

k — e scheme. Figure 8 depicts the outcomes of the computations with the Ristorcelli [8] based algebraic 

closures for two values of the Kolmogorov scaling coefficient. The results for a = 0.4 with both the pressure- 

strain and pressure-dilatation provide a modest decrease in the spread rate; handily matching that predicted 

with simply the pressure-dilatation with a = 2. The ARSM calculation is substantially changed when a = 2; 
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if a were an undefined constant one might be tempted to set it so as to match the reduction in spread rate 

indicated by the data. Given that little is known about a [though it is sure to be in the range 0.4-2.0 and 

most likely a « 1] these issues must be left to future DNS work. 

It is concluded that the present pressure-strain modeling method based on the extension of the well- 

established incompressible procedure, in which the trace-free constraint is relaxed, does rationally account 

for a significant portion of the reduction in shear stress and growth rate. This procedure is considered a 

leading order contribution to the compressible turbulence shear stress problem. The possibility that addi- 

tional compressible corrections to the pressure-strain, addressing physics not able to be accounted for using 

this constitutive relation methodology, may require consideration. 

6. Some issues in compressible turbulence modeling. In our effort to obtain a closure for the 

effects of compressibility a few issues, already alluded to, have become clearer. These issues are now high- 

lighted. 

The baroclinic dyad. The procedure invoked to obtain the algebraic Reynolds model indicates that the 

baroclinic dyad is a source of turbulence. This, of course, can be anticipated by inspection of the second- 

order moment equations. The consequence is that an eddy viscosity representation for the Reynolds stresses 

is, from first principles, inappropriate for classes of flows in which the mass fluxes are important. 

The presence of the baroclinic dyad is likely to be important only in rapidly accelerating aerodynamic flows 

such as through shocks or in hypersonic situations. The baroclinic dyad is also likely to be important in 

combusting flows where one can expect the mass fluxes to be important. In noncombusting supersonic flows it 

appears that a parameterization of the Reynolds stresses in terms of the mean deformation with modifications 

according to the compressibility of the fluctuations as those derived in §3.1 appears appropriate. 

A length scale for single-point models of compressible turbulence. Much of the work described here 

is based on the leading order asymptotic analysis of [8]. In [8] the effects of the non-zero divergence of 

compressible turbulence was parameterized by several two-point integrals made nondimensional by a length 

scale. For single-point turbulence closures the length scale is typically determined by the Kolmogorov inertial 

range scaling, e ~ k3'2/£. 

For compressible turbulence of interest to supersonic aerodynamic flows the cascade mechanism will be 

comprised of the usual nonlinear solenoidal modal interactions. The Kolmogorov scaling is expected to 

be valid in the weakly compressible limit. However, given the notable behavior seen in simulations with 

increasing compressibility of a length scale, see Figure 4.28 of the recent [15], one might expect the coefficient 

of proportionality, what we have called a, to be a function of compressibility. That this might be the case 

is also suggested by different instability modes that appear in the compressible flows. Studies similar to the 

incompressible studies shown in [63] appear to be both interesting and very relevant to issues of compressible 

turbulence modeling. 

Experimental differences in numerical and laboratory data. There appears to be a unanimous agreement 

in the DNS that, with increasing gradient or convective Mach number, an increases while a22 and au both 

decrease. This trend does not appear in the laboratory mixing layer experiments. At low Mc, (uu) appears 

to decrease more rapidly, with increasing compressibility, than (vv).  This implies that an decreases with 
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compressibility in contradistinction to DNS results. It is crucial to understand the cause for the differences 

between the DNS and the laboratory flows of the (uu) Reynolds stress behavior; turbulence models are 

based on intuition gleaned from DNS data but are used to predict engineering flows that are more similar 

to laboratory flows. The present computational results are closer to either of the laboratory experiments of 

[53] or [54] than the laboratory experiments of [53] or [54] are to each other. Earnest speculation on the 

source of the differences in the two experiments and facilities is required. 

7. Summary and conclusions. Progress towards the development of a compressible turbulence clo- 

sure, starting at the level of second-order moment equations, has been described. Modeling from the second- 

order level accommodates important structural changes that appear in the anisotropy and are a feature and 

a function of compressibility. In the second-order moment equations the compressible contributions to the 

pressure-strain covariance have been obtained. The pressure-strain has been closed by assuming that, as 

is consistent with the weakly compressible limit, it can be modeled as a tensor polynomial linear in the 

Reynolds stresses. The difference from the incompressible case is that the trace of the compressible strain is 

not zero; it is set equal to the pressure-dilatation for which models exist. The compressible pressure-strain 

closure features a dependence on several turbulence descriptors: the turbulent Mach number, the relative 

strain, the gradient Mach number, the production and the dissipation. As a consequence the coefficients in 

the compressible pressure-strain closure are not constants but functions of the compressible parameters. 

In addition to devising a closure for the pressure-strain, a closure for the mean acceleration/mass flux terms 

appearing in the Reynolds stress equations has also been developed. For the flows studied in this article, 

which are limited to the flows for which relevant experimental data are available, the acceleration/mass flux 

moments are not important. The mass flux terms will be important in the combusting or hypersonic flows 

which motivated the thesis [37], of which this article treats one aspect. 

Having closed the compressible Reynolds stress equations standard tensor representation procedures have 

been used to produce a compressible algebraic Reynolds stress model useful for flows near a structural 

equilibrium. A noteworthy item of this portion of the work is that the role that the mean pressure and 

mean density gradients plays on the Reynolds stresses is immediately seen. As a consequence, it is seen 

that the baroclinic dyad can, in the absence of mean velocity gradients, contribute to the anisotropy of the 

turbulence. It is also seen that the mean bulk dilatation contributes to the anisotropy in a way that is quite 

different from an irrotational strain. 

The mathematical results developed here have been implemented in mixing layer computations spanning a 

wide range of mean flow Mach numbers. In this article the discussion has been limited to the compressible 

mixing layer for which a sizable amount of literature exists. The calculations presented have been organized 

along two themes: 1) an investigation of the effects of compressibility as related to the compressible pressure- 

strain and the Reynolds stresses and 2) a validation of the algebraic Reynolds stress model predictions. 

The computations with the compressible pressure-strain indicate that the present modeling [which does not 

have undefined tunable constants] produces precisely the behavior seen in the DNS of [14] and [15]; there is a 

commensurate reduction, with increasing convective Mach number, of all the components of the compressible 

pressure-strain tensor. The changes in the pressure-strain lead, as is established by DNS of several different 

flows [14, 15, 16], to changes in the anisotropy of the Reynolds stresses. The changes predicted by the 

modeling for the normal and shear anisotropies are very consistent, in trend, with DNS data and especially 
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with the DNS of the mixing layer of [14] — the flow configuration most similar to the one treated in this 

article. Comparisons between the computational predictions and laboratory resutls for the Reynolds stress 

and their behavior with increasing compressibility is poor. This is due to unknown experimental issues: 

the agreement between even the different laboratory experiments is poorer than the agreement between the 

numerical and experimental results. 

All the laboratory data do however agree on the trend of the mixing layer growth rate with increasing 

compressibility: it decreases. The computational experiments conducted indicate that sizable reductions in 

the mixing layer growth rate accompany changes in the anisotropy of the turbulence due to the compressible 

aspects of the pressure-strain covariance. 
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Appendix A. The Poisson equation for the fluctuating pressure is obtained by taking the divergence 

of the Navier-Stokes equations. Both instantaneous and averaged forms of these equations are necessary in 

the derivation. The subtraction of the mean equations from the instantaneous equations and simple term 

manipulations involving the continuity relation provide the desired Poisson equation [5]: 

% = % ~ ä^j VMM + ^'< + *«"'•>+p{Ui)u'J ~' W>] + 
4 d2 

W sdx2 
M du'l 

Re dxk 

The solution for the fluctuating pressure can be determined by using Green's functions or Fourier transforms. 

With respect to the incompressible counterpart, the compressible Poisson equation is severely complicated. 

An equivalent form which resembles more to the incompressible equation can be obtained as: 

4 d2 

dx\       dt2        dXiXjrs ll d     dxiXj Lr l  J     rN *  J/J       dxiXj' 

Re dxk_ 

The last term on the right hand side (RHS) converts, when the fluctuating pressure solution is used to deter- 

mine the pressure-strain correlation, into a viscous interaction tensor whose trace is equal to the dilatational 

dissipation. In the absence of walls this term can be omitted in high Reynolds number flows. The acoustic 

term (the first term on the RHS) is difficult to be taken into account in the present analysis. If it is assumed 

that the pressure fluctuations are caused by turbulence only then this term is negligible. The condition 

p'/p ■€. 1 allows the neglect of the second term on the RHS. The remaining terms are the return-to-isotropy 

and the rapid part for which known modeling principles can be applied in the limit of low convective Mach 

numbers. 

Appendix B. It well known that for linear pressure strain forms it is impossible to satisfy realizability 

conditions - the requirement that the eigenvalues of the Reynolds stress tensor remain positive. Satisfying 

realizability is a very practical computationally stabilizing requirement. Our experience with computations 

in complex flows indicates that realizability is very useful. The model is now made (weakly) realizable 

following methods suggested by Schumann [64] and Lumley [34] and detailed by Shih and Shabbir [65]. Let 

F = 1 + 27/77/8 + 977/4 is a parameter involving the second invariant 77 = —^a^aji and third invariant 

777 = —haijCLjkaki of the Reynolds stress anisotropy tensor. Then the following asymptotic behavior for the 

pressure strain-model ensures that realizability is satisfied: 

2 
Aee - öP z = cpa   as F -> 0 o 

(82) -^2pege->0    asF^O 
d(up), 

Cg 

where the index e indicates that the relations are written in the principal axes of (u"u'j). The computa- 

tional form of the model with the additional parameters necessary to enforce realizability so necessary for 

computational stability is 

'4     2 
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[1 - C3 + 2d2] aipSpj((u)) + Stp((u))apj - -S;,((tj))apg% 3~P<n 

(83) [1 - d - 2d2}[aipüpj((u)) - ttip((u))apj} + -d2Spp((u))aij BrF
ß>- 

with C3 = (5 - 9C2)/11 and C4 = (1 + Id)/!!. The value for the constant C2 will be the same as in 

the incompressible model to preserve consistency in the zero Mach number limit, that is C2 = 0.45. The 

parameters are ar = 0.1, ßr = 0.5, Ar = min{F-a-, Q.!'01-) and Br = mm(F-ßr, O.l-'3'-). 

Using this modified form of the pressure-strain model the ARSM coefficients become: 61 = | - BrF
ßr(^ + 

fdi), b2 = 4|r„i/0, h = 1 - BrF^{\ - C3 + 2d2), 64 = 1 - BrF^(l - C4 - 2<fc), and 

(84) 
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